

Cellular Respiration Harvesting Chemical Energy

Harvesting stored energy

- Energy is stored in organic molecules
 - carbohydrates, fats, proteins
- <u>Heterotrophs</u> eat these organic molecules \rightarrow <u>food</u>
 - digest organic molecules to get...
 - raw materials for synthesis
 - fuels for energy
 - controlled release of energy
 - "burning" fuels in a series of step-by-step enzyme-controlled reactions

Harvesting stored energy

Glucose is the model

<u>catabolism</u> of glucose to produce ATP

<u>RESPIRATION</u> = making ATP (& some heat) by burning fuels in many small steps

How do we harvest energy from fuels?

- Digest large molecules into smaller ones
 - break bonds & <u>move electrons</u> from one molecule to another
 - as electrons move they "<u>carry energy</u>" with them
 - that energy is stored in another bond, released as heat or harvested to make ATP

How do we move electrons in biology?

- Moving electrons in living systems
 - electrons cannot move alone in cells
 - electrons move as part of <u>H atom</u>

move H = move electrons

Coupling oxidation & reduction

- REDOX reactions in respiration
 - release energy as breakdown organic molecules
 - break C-C bonds
 - strip off electrons from C-H bonds by removing H atoms
 - $C_6H_{12}O_6 \rightarrow CO_2$ = the fuel has been <u>oxidized</u>
 - electrons attracted to more electronegative atoms
 - In biology, the most electronegative atom?
 - $O_2 \rightarrow H_2O$ = oxygen has been <u>reduced</u>
 - <u>couple REDOX reactions &</u> <u>use the released energy to synthesize ATP</u>

oxidation

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$$

reduction

Oxidation & reduction

- Oxidation
 - adding O
 - removing H
 - loss of electrons
 - releases energy
 - <u>exergonic</u>

- Reduction
 - removing O
 - adding H
 - gain of electrons
 - stores energy
 - endergonic

AP Biology

Overview of cellular respiration

- 4 metabolic stages
 - Anaerobic respiration
 - 1. Glycolysis
 - respiration without O₂
 - in cytosol
 - Aerobic respiration
 - respiration using O₂
 - in mitochondria
 - 2. Pyruvate oxidation
 - 3. Krebs cycle
 - 4. Electron transport chain

 $C_6H_{12}O_6 + 6O_2 \rightarrow ATP + 6H_2O + 6CO_2(+ heat)$

And how do we do that?

H

H

H

H

H

H

H

ATP synthase enzyme

- H⁺ flows through it
 - conformational changes
 - bond P_i to ADP to make ATP
- set up a H⁺ gradient
 - allow the H⁺ to flow down concentration gradient through ATP synthase
 - ADP + $P_i \rightarrow ATP$

But... How is the proton (H⁺) gradient formed?

Got to wait until the sequel! Got the Energy? Ask Questions! H

H

Ht

H

Ht

H

H

H

