

Cellular Respiration Stage 1: Glycolysis

Glycolysis

Breaking down glucose

"glyco – lysis" (splitting sugar)

glucose $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ pyruvate 6C $2x \frac{3C}{3C}$

- ancient pathway which harvests energy
 - where energy transfer first evolved
 - transfer energy from organic molecules to ATP
 - still is starting point for all cellular respiration
- but it's inefficient
 - generate only <u>2 ATP</u> for every <u>1 glucose</u>
- occurs in cytosol

AP Biology

In the

cytosol? Why does

that make

evolutionary sense?

Evolutionary perspective

Prokaryotes

- first cells had no organelles
- Anaerobic atmosphere
 - life on Earth first evolved <u>without free oxygen</u> (O₂) in atmosphere
 - energy had to be captured from organic molecules in absence of O₂
- Prokaryotes that evolved glycolysis are ancestors of all modern life
 - ◆ <u>ALL</u> cells still utilize glycolysis

- **10 reactions**
 - convert
 <u>glucose (6C)</u> to
 <u>2 pyruvate (3C)</u>
 - produces:
 <u>4 ATP & 2 NADH
 </u>
 - consumes:
 <u>2 ATP</u>
 - net:
 <u>2 ATP & 2 NADH</u>

DHAP = dihydroxyacetone phosphate G3P = glyceraldehyde-3-phosphate

Glycolysis summary

1st half of glycolysis (5 reactions)

Glucose "priming"

- get glucose ready to split
 - phosphorylate glucose
 - molecular rearrangement
- split destabilized glucose

AP Biology

2nd half of glycolysis (5 reactions)

Energy Harvest

- NADH production
 - G3P donates H
 - oxidize sugar
 - reduce NAD+
 - NAD⁺ → NADH
- ATP production
 - G3P → pyruvate
 - PEP sugar donates P
 - ADP \rightarrow ATP

Substrate-level Phosphorylation

In the last steps of glycolysis, where did the P come from to make ATP?

0-

the sugar substrate (PEP)

Is that all there is?

- Not a lot of energy...
 - for 1 billon years⁺ this is how life on Earth survived
 - no O₂ = slow growth, slow reproduction
 - only harvest 3.5% of energy stored in glucose
 - more carbons to strip off = more energy to harvest

Glycolysis

glucose + 2ADP + 2P_i + 2 NAD⁺ \rightarrow 2 pyruvate + 2ATP + 2NADH

Going to run out of NAD+

- without regenerating NAD+, energy production would stop!
- another molecule must accept
 H from NADH

How is NADH recycled to NAD+?

$\begin{array}{c} \text{Alcohol Fermentation} \\ \text{pyruvate} \rightarrow \text{ethanol} + \text{CO}_2 \\ 3\text{C} & 2\text{C} & 1\text{C} \\ \text{NADH} & \text{NAD}^+ \end{array}$ $\begin{array}{c} \text{bacteria} \\ \text{bact$

 at ~12% ethanol, kills yeast
 can't reverse the reaction

animals

CH₃

Lactate

AP Biology

And how do we do that?

(H)

H

H

H

H

H

ATP synthase

- set up a H⁺ gradient
- allow H⁺ to flow through ATP synthase
- powers bonding of P_i to ADP

 $ADP + P_i \rightarrow ATP$

But... Have we done that yet?

